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Abstract. The exact penetrability for an inverted biharmonic oscillator potential is calcu- 
lated and compared with that obtained from the WKB method. 

A recent addition to the collection of exactly solvable models in one dimension is the 
biharmonic oscillator, quantum solutions for which were considered by Gettys and 
Graben (1975). The purpose of this paper is to consider the problem of the penetration 
of a particle encountering an inverted biharmonic potential barrier. 

The potential corresponding to an inverted biharmonic oscillator potential is given 
by 

v-’ 0 ZmwIX 2 2  ’ x < 0 (region I) 

v0 - imw z x  ’, x > 0 (region 11) 

where Vo is the height of the potential and o1 and o2 are the oscillator frequencies in 
regions I and I1 respectively. 

The Schrodinger equation can be reduced to the standard form: 

with the following substitutions: 

Vo-E 
h02 

a’=- (region 11) 

solutions for which can be sought in terms of Weber’s parabolic cylinder functions 
(Abramowitz and Stegun 1965). A study of the asymptotic behaviour of the parabolic 
cylinder functions for large values of positive and negative x will facilitate the choice of 
proper wavefunctions. In region I, E*(al, -U> would represent the incident wave and 
the reflected component would be given by E(a l ,  -U). In region I1 however, there 
should be wave packets moving to the right only and accordingly we will have the 
function E(aZ,  U). 
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Here the function E(&, x) is the complex linear combination 

E(a, x)  = k-1/2 W(CY, x)  +ik ' I 2  W(a,  - x)  (4a) 

of the fundamental parabolic function W(a, x )  (Abramowitz and Stegun 1965); the 
quantity k is defined by 

k = (1+ez*a)1/2-e*u, (4b) 

By observing that the probability current should be conserved at all values of x ,  we 
obtain the following relation for the penetrability: 

The amplitude ratio IT/A( is obtained by matching the wavefunction and their 
derivatives with respect to x at x = 0. 

The expression for penetrability in equation (5a)  can be simplified to read 

P = 4G-'(Olw2)'/'[(1 +e2*al)(l +ezrmz)]-1'2 (5b) 

where G is given by 

The penetrability in equation (5b) is invariant under an interchange of w 1  and U'. In 
some special cases, equation (5b) for penetrability can be simplified to give revealing 
results. We discuss them below. 

Case 1. If we put U = U then cy1 = a2 = LY and we obtain G = 4 0  whence the penetrability 
is given by 

P = (1 + exp[2r( V,-E)/hw]}- l  (6 )  

which is the Hill-Wheeler expression (Hill and Wheeler 1953) for the penetration of an 
inverted harmonic oscillator potential. Note that if we put V, =E,  P = 0.5 irrespective 
of the value w. 

Case 2. At V,, =E, we have cy1 = a2 = 0 in which case 

G = ( w ~ / ' + w : / ~ ) ~  

and the penetrability is given by 
1/4 - 2  

P = 2[ (:) ll4+ (2) ] (7) 

This formula enables us to study the departure of the penetrability function for an 
inverted biharmonic oscillator barrier from that of an inverted harmonic oscillator 
barrier. 

Case 3. If in equation (5b), the factor 1 can be neglected in comparison with the 
exponentials, which would correspond to the case of a tall and thick barrier, the 
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penetrability would then be given by 

where 5 = E/ Vo. 

the exponential factor dominates the behaviour of P. 

given by the formula (Froman and Froman 1965) 

Now, G is a slowly varying function of Vo, with the result that for a given value of 5, 

For smoothly varying potentials the transmission coefficient in the WKB method is 

where K is given by 

Here a and b are the classical turning points. Strictly speaking, the use of equations (9a )  
and (9b)  to obtain the transmission coefficient for the inverted biharmonic oscillator 
potential is not fully justified, because the potential is not smooth at x = 0. However, for 
purposes of comparison if we take the validity of equations (9a )  and (9b)  as granted, the 
integration is straightforward and one obtains 

7r(V,-E) 1 
K =  2h k+3 ( 9 4  

It is seen from equation ( 9 4  that w 1  and w2 can be interchanged, to give the same value 
of penetrability as in equations (9a )  and (9b). 

A comparison between the exact and WKB penetrabilities is made in figure 1, which 
gives the behaviour of the penetrability functions of equations ( 5 )  and (9)  respectively as 

0 0 8  1 .6  

Figure 1. Exact (full curves) and WKB (chain curves) penetrabilities for an inverted 
biharmonic oscillator barrier as a function of 6. (a) Vo = 1.0, ho, = 1.0, ho, = 2.0; ( b )  
Vo= 1.0, hwl = 1.0, h o 2 =  5.0. 
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a function of 6 for some typical values of Vo, hwl and ha2 .  It is evident from the figures 
that the penetrability obtained from WKB methods agree with the exact results only at 
low values of the incident energies. The exact transmission coefficient reaches the value 
one at large values of 6. For given values of Vo and hwl the approach to one is faster for 
lower values of hw2. 

The departure of the transmission coefficient for the inverted biharmonic barrier 
from that of an inverted harmonic barrier is best studied at 5 =  1.0. A plot of the 
penetrability given by equation (7) against the ratio ( w 2 / o 1 )  for t=  1.0 is shown in 
figure 2. The maximum value of the penetrability is 0.5 at wl = o2 and falls off on either 
side of ( w 2 / w 1 )  = 1. 
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Figure 2. Exact penetrability for the inverted biharmonic oscillator barrier as a function of 
the ratio (02/01) for f =  1.0. 
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